一种基于内像素计算相移干涉步长的优化方法

王选择^{1,2} 杨练根¹ 翟中生¹ 邬文俊¹ 许忠保¹
 '湖北工业大学机械工程学院,湖北武汉 430068
 *天津大学精密测试技术及仪器国家重点实验室,天津 300072

doi: 10.3788/AOS201535.1112008

An Optimal Method of Calculating Phase Shift Interference Step Based on Inter-Pixel Algorithm

Wang Xuanze^{1,2} Yang Liangen¹ Zhai Zhongsheng¹ Wu Wenjun¹ Xu Zhongbao¹

¹School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China ²State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China

Abstract For phase-shifting interferometry, the inter-pixel algorithm with ellipse fit is a kind of effective method to get the phase shift steps. The key of improving the precision is to search two groups of pixels, whose phase difference is $\pi/2$, from the interferogram. Therefore, The two interferograms with phase difference $\pi/2$ are chosen by calculating the zero and peak positions for local gray mean values of all interferograms. Using these two interferograms, a method is presented to find two groups of pixels of phase difference $\pi/2$ with maximum number for the whole image based on four gray comparison methods. The experiment shows that the proposed method has higher accuracy and universality than the traditional method.

Key words coherence optics; phase-shifting calculation; inter-pixel; interferogram; piezo-electric transducer **OCIS codes** 120.5050; 120.5060; 110.4500; 120.4640

1 引 言

在显微干涉测量中,相移干涉的精度依赖于相移步长的稳定性与精度^[1-2],实际测量中,要求相移步长小 于λ/6波长。然而,常规的压电陶瓷(PZT)驱动,因为驱动步长的非线性^[2-4],以及与 PZT 老化、温度等的关系, 很难在如此小的尺度上进行精确驱动^[5]。为了提高相移驱动的精度,国内外专家学者提出了很多的解决方 法,包括一些对相移的标定技巧,或采用一些硬件计量措施以及一些误差抑制与补偿算法等^[6-11]。

内像素椭圆拟合算法,是一种高效无硬件成本的计算相移步长的方法^[5]。它通过选取一幅干涉图中有 相位差近似90°的两像素点在干涉序列中的灰度值,在xy坐标系统中,形成椭圆形状的李萨如图。通过对李 萨如图的椭圆拟合,直接获取相移步长。这种方法对PZT驱动的线性特性与迟滞特性没有任何要求,是一 种免计量的自标定方法^[12]。

收稿日期: 2015-04-10; 收到修改稿日期: 2015-05-08

基金项目:国家自然科学基金(51175154、51275157、51275158)、天津大学精密测试技术及仪器国家重点实验室开放基金(PIL1209) 作者简介:王选择(1971—),男,教授,博士生导师,主要从事精密测量、光电检测等方面的研究。

E-mail:wangxz@mail.hbut.edu.cn

然而,这种方法的精度高低严重受到所选取像素灰度噪声的影响。如何降低参与椭圆拟合灰度噪声^[13-14] 成为高精度获取步长的瓶颈。虽然文献[5]给出了椭圆拟合算法要求两像素点相差具有近似π/2的条件,但并 没有给出如何寻找这样两点的方案。文献[15]认为只要干涉条纹密度足够高,就能够降低对像素选取的要求。 对于光洁度非常高的样品,必须保证测量面有一个人为的倾斜角,这限制了测量条件,难以保证普适性的要求。 但分析认为样品倾斜会导致明显的与条纹有关的系统误差^[9],因此,测量中应尽量避免人为的倾角。

为此,本文提出了一种降低拟合灰度噪声、并在全视场范围内高效寻取相差π/2像素的方法,从根本上解决了拟合精度受噪声影响的问题。同时保证在同等噪声水平下,相位差近似π/2,保证具有更高的拟合精度。

2 内像素原理

在 PZT 驱动条件下,顺序采样干涉图像,得到一组干涉序列图。相移干涉序列图上任一点的像素灰度 理论上满足

$$I_i(x,y) = a(x,y) + b(x,y)\cos[\varphi(x,y) + \alpha_i] + \varepsilon_i(x,y) , \qquad (1)$$

式中x,y为像素点坐标,i表示干涉序列图上的第i幅图, $I_i(x,y)$ 为第i幅干涉序列图上某像素点光强灰度值, a(x,y)为像素点直流光强,b(x,y)为交流光强幅值, $\varphi(x,y)$ 为该像素点上初相位,即干涉序列第一幅图上该像素 点的相位。 $\varepsilon_i(x,y)$ 为随机噪声误差, α_i 为累积驱动步长,满足

$$\alpha_i = \sum_{k=2}^i \delta_k , \qquad (2)$$

式中 δ_k 为驱动相移步长,k从2开始,因为PZT实际驱动是从第二幅干涉图开始的,即 $\delta_i=\alpha_i=0$ 。

在驱动相移获取的基础上,进一步计算各像素点初相位 $\varphi(x,y)$ 十分容易^[12]。利用 IEEE std1057-2007提供的线性化三参数最小正弦二乘拟合算法^[16],或类似的非等步长相移正弦拟合的一般算法^[12],求解十分方便。

实际测量中,PZT通过加载线性电压的方式进行驱动。而由于PZT本身的非线性、迟滞性以及受温度影响的特性,其驱动的重复性与线性特性无法满足驱动步长获取的要求。

内像素法,通过选取干涉图上有一定相位差的两点,直接通过拟合计算获取累积驱动步长,与PZT的驱动方式无关。其思路为:假设干涉图上两点 (x₁,y₁)与 (x₂,y₂),在不考虑随机误差的情况下,它们的灰度可以表达为

$$\begin{cases} I_i(x_1, y_1) = a(x_1, y_1) + b(x_1, y_1) \cos[\varphi(x_1, y_1) + \alpha_i] \\ I_i(x_2, y_2) = a(x_2, y_2) + b(x_2, y_2) \cos[\varphi(x_2, y_2) + \alpha_i] \end{cases}.$$
(3)

当 $\varphi_{12} = \varphi(x_1, y_1) - \varphi(x_2, y_2) \neq k\pi$ 时,由 $I_i(x_1, y_1)$ 与 $I_i(x_2, y_2)$ 构成的李萨如点图满足一椭圆方程;当且 $\varphi_{12} = k\pi + \pi/2$ 时,为一正椭圆。

通过直角坐标椭圆方程的线性回归拟合计算^[17]以及参数对应关系很容易得到(3)式中的各参数值 $a(x_1,y_1)$ 、 $b(x_1,y_1)$ 、 $a(x_2,y_2)$ 、 $b(x_2,y_2)$ 、 φ_{12} 。分析表明椭圆方程越接近正椭圆,拟合精度越高。

在这些拟合参数的基础上,根据(3)式,令 $\theta_i=\varphi(x_1, y_1)+\alpha_i$,推导出

$$\begin{cases} \cos \theta_{i} = \frac{I_{i}(x_{1}, y_{1}) - a(x_{1}, y_{1})}{b(x_{1}, y_{1})} \\ \sin \theta_{i} = \frac{\cos \alpha_{i} \cos \varphi_{12} - \frac{I_{i}(x_{2}, y_{2}) - a(x_{2}, y_{2})}{b(x_{2}, y_{2})} \\ \sin \varphi_{12} \end{cases}$$
(4)

通过双参数的反正切函数¹¹⁸¹进一步计算θ_i。由于相移驱动可能超出一个周期范围,因此需要解包裹运算,得到θ_i的绝对相位解Ω_i。结合α_i=0,因此

$$\alpha_i = \Omega_i - \Omega_1 \,. \tag{5}$$

从以上算法中可以看出,α,的解精度由 I_i(x₁,y₁) 与 I_i(x₂,y₂)的精度决定。而干涉图上任意两点总是存在 很大的随机误差,因此单纯利用两点进行计算,误差很大,很显然难以满足一般条件下对相移求解的高精度 要求,而且如何保证两点的相位差尽量接近π/2,需要找到一定的算法来解决。

3 降低噪声的方法

为了提高拟合精度,需要尽量选取相差π/2的像素点。在此基础上进一步降低噪声的影响。

3.1 选取像素的方法

在干涉序列图中,首先选取相差为π/2的两幅干涉图,具体选取方案在第4部分介绍。这里需要说明的 是:在实际的测量中,很难找到恰好满足相移差为π/2的两幅干涉图,另外由于相移为π/2与kπ+π/2具有同 样的拟合效果,因此,所选干涉图相移也并不局限在π/2上。

假设所选两幅干涉图序号分别为m,n,如图中序号分别为6,10,相移相差为 $k\pi + \pi/2 + \Delta, \Delta$ 为一尽量趋向0的实际偏差量。那么这两幅干涉图对应像素点之间满足

$$\begin{cases} I_m(x,y) = a(x,y) + b(x,y)\cos[\varphi(x,y) + \alpha_m] \\ I_n(x,y) = a(x,y) + b(x,y)\cos[\varphi(x,y) + \alpha_m + k\pi + \frac{\pi}{2} + \Delta] \end{cases}, \text{or} \\ \begin{cases} I_m(x,y) = a(x,y) + b(x,y)\cos[\varphi(x,y) + \alpha_n - k\pi - \frac{\pi}{2} - \Delta] \\ I_n(x,y) = a(x,y) + b(x,y)\cos[\varphi(x,y) + \alpha_n] \end{cases}. \end{cases}$$
(6)

如果在干涉图 m上相位为 β 的像素点位置被定义为 $(x_{\beta m}, y_{\beta m})$,干涉图 n上相位为 β 的位置点被定义为 $(x_{\beta n}, y_{\beta m})$,那么可以得到

$$\varphi\left(x_{\beta m}, y_{\beta m}\right) = \varphi\left(x_{\beta n}, y_{\beta n}\right) + k\pi + \frac{\pi}{2} + \Delta .$$
(7)

这样通过寻找两幅干涉图上的同相位点,找到了相差近似为 $k\pi + \pi/2$ 的两像素点,相当于对应(3)式中的 (x_1, y_1) 与 $(x_2, y_2)_{\circ}$

3.2 提高灰度值精度方法

单个的 (x_{βm}, y_{βm})与 (x_{βn}, y_{βn}) 像素点对应的灰度值含有较大的随机误差。为了尽量降低随机误差的影响, 通过灰度判别法,在干涉序列图中搜索一定范围内β的所有像素点。这里采用了四种灰度判别方案。

1) β 为(0, π)范围, $(x_{\beta m}, y_{\beta m})$ 与 $(x_{\beta n}, y_{\beta n})$ 是分别满足如下要求的所有像素点

$$\begin{cases} I_{n}(x_{\beta m}, y_{\beta m}) < I_{m-1}(x_{\beta m}, y_{\beta m}) \\ I_{n}(x_{\beta n}, y_{\beta n}) < I_{n-1}(x_{\beta n}, y_{\beta n}) \end{cases}.$$
(8)

即干涉序列值中满足灰度值增长的像素点。

2) β为(-π,0)范围

$$\begin{cases} I_m(x_{\beta m}, y_{\beta m}) > I_{m-1}(x_{\beta m}, y_{\beta m}) \\ I_n(x_{\beta n}, y_{\beta n}) > I_{n-1}(x_{\beta n}, y_{\beta n}) \end{cases}.$$

$$\tag{9}$$

即干涉序列值中满足灰度值降低的像素点。

3) β为(-π/2,π/2)范围

$$\begin{cases} I_m(x_{\beta m}, y_{\beta m}) > a(x_{\beta m}, y_{\beta m}) \\ I_n(x_{\beta n}, y_{\beta n}) > a(x_{\beta n}, y_{\beta n}) \end{cases}.$$
(10)

即干涉序列值中满足灰度值处于正半周的像素点。

4) β 为(- π ,- π /2)或(π /2, π)

$$\begin{pmatrix} I_m(x_{\beta m}, y_{\beta m}) < a(x_{\beta m}, y_{\beta m}) \\ I_n(x_{\beta n}, y_{\beta n}) < a(x_{\beta n}, y_{\beta n}) \end{pmatrix}.$$

$$(11)$$

即干涉序列值中满足灰度值处于负半周的像素点。

其中第3)、4)两种方案中的a代表背景光强,由对应像素点序列最大最小灰度值的平均值替代。

图 1 所示为采用第 2)种方法选定的对应像素点,CCD 像素总尺寸为 1292 pixel×960 pixel。图 1(a)中的白点代表所有的 $(x_{\beta_m}, y_{\beta_m})$ 点,图 1(b)中的白点代表所有的 $(x_{\beta_n}, y_{\beta_n})$ 。从图 1 中可以看出,所选两组像素之间有重叠部分,因为每组像素的选取范围为 π ,相差为 π /2,因此理论上有 π /2 重叠部分。这样做的目的主要是为了最大可能增加选取像素的数目,同时简化象素选取的判断条件,降低像素选取的搜索计算量。

图1 同条件下两幅干涉图对应像素点

Fig.1 Pixels of the same condition for two interfergrams

在分别选定像素后,对这些像素的灰度值求平均,得到两组平均化的序列值,为

$$\begin{cases} g_{1}(i) = \frac{1}{n_{1}} \sum I_{i}(x_{\beta m}, y_{\beta m}) \\ g_{2}(i) = \frac{1}{n_{2}} \sum I_{i}(x_{\beta n}, y_{\beta n}) \end{cases},$$
(12)

式中n₁、n₂分别代表两幅干涉图中所选定像素的总个数。

用 $g_1(i)$ 、 $g_2(i)$ 分别代替(4)式中的 $I_i(x_1,y_1)$ 与 $I_i(x_2,y_2)$ 求解得到驱动相移量。

显然,这种搜索整幅干涉图上具有相差π/2像素点的方法,所得到的灰度均值更具有代表性,噪声抑制能力强。由于从整幅图上搜索,消除了对干涉图多条纹要求的限制^[11]。

4 寻找相移差为 kπ+π/2 的两幅干涉图

为了克服单点像素灰度值噪声的影响,找到相差近似 *k*π + π/2 的两幅干涉序列图。同时在寻找过程中 计算量小,这里选取每幅干涉序列图的局部灰度均值进行判断。

具体思路为:对每一幅干涉图,选取干涉中心区域50×50的范围,进行灰度均值,得到一组灰度均值序列。 如图2所示,当PZT驱动电压为0~5V,干涉序列数为N=35时,35幅干涉序列图的区域灰度均值,假设为G(i)。

通过寻找零点位置点与极大值位置点对应的干涉序列图,作为相差近似为 kπ + π/2的两幅干涉序列图。 首先选取最大值 V_{max}或最小值 V_{min}点对应的序列图,作为其中一幅干涉图,如图 2 中序列位置 m=10或 m=1。然 后寻找最靠近中间位置的点,作为另外一幅干涉序列图。在找到序列中的最大值 V_{max}与最小值 V_{min}的基础上, 然后搜索序列点 i 作为另外一幅干涉序列位置 n,其中 i 满足

$$\left| G(i) - \frac{V_{\max} + V_{\min}}{2} \right| = V_{\min} .$$
(13)

如图 2 中所示,选取 n=6 的序列图作为另外一幅干涉图。综合考虑公式中要求与前后相邻序列比较,所选两幅干涉图不考虑一头一尾的两幅干涉图,最后选定序列为6 与 10 的两幅干涉图。

5 实 验

5.1 实验方法

基于 Mirau干涉显微结构的干涉测量系统如图 3 所示。其中白光发光二极管(LED)发射的光透过滤光片 形成准单色光,经过准直透镜准直后入射到干涉测量光路。

图3显微相移干涉测量系统

Fig.3 Micro phase shift interferometry system

待测样品与 PZT 固定在一起。计算机通过控制卡进行数/模(D/A)转换控制 PZT 步进驱动实现相移。通过控制 PZT 驱动电压量的同时,顺序采集干涉图,形成干涉序列图片。值得指出的是,由于这里干涉所需的相移量很小,不超过一个波长,因此常规电压条件下的驱动能够满足 PZT 驱动的要求。

5.2 求解步骤

按照前面的方法,求解步骤为:首先读取干涉序列图,然后对每一幅干涉图求中心局部区域灰度均值 G(i)。根据G(i)结合(13)式搜索两幅相移为 $k\pi + \pi/2$ 的干涉图,得到 m_n 。接着选取(8)~(11)式中任一公式, 得到满足条件的 $(x_{\rho m}, y_{\rho m})$ 与 $(x_{\rho n}, y_{\rho n})$,然后利用(12)式计算 $g_1(i) \ g_2(i)$,并代替(3)、(4)式中的 $I_i(x_1, y_1)$ 与 $I_i(x_2, y_2)$,在椭圆回归拟合的基础上利用(4)式求解 θ_i ,最后在对 θ_i 解包裹的条件下,利用(5)式得到驱动步长。 流程框图如图4所示。

图4 相移计算流程

Fig.4 Phase-shifting calculation process

5.3 实验结果

图 5 所示为某干涉序列中,利用(8)~(11)式计算 g₁(*i*)、g₂(*i*),并以它们分别为纵横坐标得到的李萨如 图。同时,为了对比其他内像素的方法,图中也显示了另外两种任选干涉图中两区域均值的李萨如图。从 图 5 中可以看出满足(8)~(11)式条件的四组序列图基本上都满足正交关系,即序列满足相差近似π/2的关系。

由于整个相移驱动超过了一个周期,所以灰度值序列形成的椭圆超过了一周,在1.5周以上。前后椭圆 轨迹不能重合的原因除了随机噪声的影响外,主要来源于所采用的光源为窄带滤光光源。由于滤波带宽的 影响,不同级次的干涉条纹幅度有微小差别,导致灰度均值理论上不满足严格椭圆关系,这也是本文不同条 件下不同的椭圆拟合误差导致相移计算略有不同的主要因素。

Fig.5 Lissajous figures of interference sequence gray mean values

表1所示为对图5进行椭圆拟合的相差,即(4)式中的 φ_{12} 。前四种接近正交关系,在± $\pi/2$ 附近,后面两种条件下的正交性差。

表1 不同条件下的椭圆拟合相位差

Conditions	From Equ.8	From Equ.8	From Equ.8	From Equ.8	Arbitrary regional 1	Arbitrary regional 2
Phase difference	-1.3970	-1.3695	-1.7915	-1.3604	-2.6643	0.1587

六种序列条件下的解包裹相移如图6所示,从图中可以看出,六组相移曲线基本重合,说明彼此之间偏差很小。

图 6 六种序列条件下解包裹的相移量

Fig.6 Unwrapping phase-shifting for six kinds of sequence conditions

图 7 以均值为基准的相移量误差曲线

为了放大显示六种序列条件下的相移识别误差,图7所示为以六条曲线均值为基准,六组相移结果的偏差。可以看出,六条曲线中,后两种任意条件下的相移计算误差明显偏大,达到±0.1rad。进一步剔去这两种条件

Fig.7 Phase shift error curve with respect to the mean

下的均值与偏差,计算表明:相移总体偏差在±0.015 rad之间。对于滤光片中心波长为520 nm的单波长干涉 而言,相当于驱动精度识别达到±0.62 nm的精度。其中,每一种条件下,峰峰值变化接近0.01 rad。相比于文 献[5]中内像素法求均方根(RMS)变动为0.032 rad,有了显著的提高。

6 结 论

基于内像素原理,提出了一种寻找灰度值满足正交关系的像素点方法,提高相移驱动中相移自获取的 精度。由于从整幅干涉图中寻找相差π/2的像素点,因此均值后的随机噪声小;寻找相位处于一定范围内的 像素点,找到的像素点足够多,且只需要整个干涉图上满足1/4个条纹以上的相差,就能找到两组正交的灰 度序列,李萨如图满足正椭圆关系。如果不满足1/4个条纹,两组序列满足相差尽可能接近π/2的椭圆关 系。证明了该方法在显微干涉测量中对相移的识别具有更大的普适性。

通过局部均值灰度序列零、极点位置,预先找到相差 kπ + π/2 的两幅干涉图,并仅通过这两幅干涉图搜 素所有满足条件的两组像素点。搜素效率高,极大降低了搜素计算量。实验采用 520 nm 的窄带滤光光源, 进行相移扫描测量,相移识别精度优于 0.62 nm。证明了该方案在不需要附加任何硬件成本的条件下,相位 识别精度达到了很高的水准。

参考文献

1 Hedser van Brug. Phase-step calibration for phase-stepped interferometry[J]. Appl Opt, 1999, 38(16): 3549-3555.

2 Li Chuncheng, Wang Ming, Xia Wei, *et al.*. A novel Fabry-Perot micro-displacement sensor based on intensity demodulation method [J]. Acta Optica Sinica, 2014, 34(6): 0628001.

李春成, 王 鸣, 夏 巍, 等. 基于 F-P 腔强度解调的微位移传感器[J]. 光学学报, 2014, 34(6): 0628001.

- 3 C T Farrell, M A Player. Phase step measurement and variable step algorithms in phase-shifting interferometry[J]. Meas Sci & Technol, 1992, 3(10): 953-958.
- 4 Zhu Yue ,Gao Wanrong. High-resolution full-field optical coherence tomography for biological tissue[J]. Chinese J Lasers, 2014, 41(8): 0804002.
 - 朱 越,高万荣.全场高分辨生物组织光学层析成像[J].中国激光,2014,41(8):0804002.
- 5 C T Farrell, M A Player. Phase-step insensitive algorithm for phase-shifting interferometry[J]. Meas Sci & Technol, 1994, 5(6): 648-652.
- 6 Tang Weijie, Fu Lei, Chen Shufen, *et al.*. Realization of measuring micro-vibration based on phase generated carrier modulationdemodulation method and interference analysis[J]. Chinese J Lasers, 2013, 40(2): 0214001.

唐伟杰,付 雷,陈淑芬,等.相位生成载波调制解调法测量微振动的实现及干扰分析[J].中国激光,2013,40(2):0214001.

7 Wang Jun, Chen Lei, Wu Quanying, *et al.*. Retardation measurement of wave plates using white-light interference vertical scanning method [J]. Laser & Optoelectronics Progress, 2013, 50(1): 011203.

王 军,陈 磊,吴泉英,等.利用白光干涉垂直扫描法测量波片延迟量[J].激光与光电子学进展,2013,50(1):011203.

- 8 Bogdan Florin Ionita, Florin Garoi, Petre Catalin Logofatu, et al.. PZT calibration[J]. Optik-International Journal for Lightand Electron Optics, 2013, 124(17): 2803-2806.
- 9 Kinnstaetter K, Lohmann A W, Schwider J, et al.. Accuracy of phase shifting interferometry[J]. Appl Opt, 1988, 27(24): 5082-5089.
- 10 Cheng YY, Wyant J C. Phase shifter calibration in phase-shifting interferometry[J]. Appl Opt, 1985, 24(18): 3049-3052.
- 11 Smythe R, Moore R. Instantaneous phase measuring interferometry[J]. Appl Opt, 1984, 23(4): 361-364.
- 12 Xin Guan, Xuanze Wang, Zhongsheng Zhai, *et al.*. A driving step auto-access method for single-wavelength microscopic interference [C]. SPIE, 2014, 9276: 92760U.
- 13 Abhijit Patil, Pramod Rastogi. Approaches in generalized phase shifting interferometry[J]. Opt& Lasers in Eng, 2005, 43 (3): 475-490.
- 14 Lai G, Yatagai T. Generalized phase-shifting interferometry[J]. J Opt Soc Am A, 1991, 8(5): 822-827.
- 15 Rigoberto Juarez-Salazar, Carlos Robledo-Sánchez, Cruz Meneses-Fabian, *et al.*. Generalized phase-shifting interferometry by parameter estimation with the least squares method[J]. Opt& Lasers in Eng, 2013, 51(5): 626-632.
- 16 IEEE Instrumentation and Measurement Society. IEEE Standard for Digitizing Waveform Recorders[S]. New York: American National Standards Institute, 2008.

17 Wang Xuanze, Zhao Xinze, Xie Tiebang. Research on direct digital process of inductance sensor[J]. Chinese J Scientific, Instrument, 2005, 26(12): 1248-1252.

王选择, 赵新泽, 谢铁邦. 电感式测微仪的直接数字化处理研究[J]. 仪器仪表学报, 2005, 26(12): 1248-1252.

18 Wang Xuanze, Zhai Zhongsheng, Zhong Yuning, et al.. Measurement of two-dimensional angle using dynamic modulation and interference fringe shape[J]. Optics and Precision Engineering, 2014, 22(2): 274–280.

王选择,翟中生,钟毓宁,等.应用动态调制与干涉条纹形状测量二维角度[J].光学精密工程,2014,22(2):274-280.

栏目编辑: 何卓铭